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ABSTRACT

A novel algorithm for robust curvature estimation based on sinusoidal curve fitting is proposed. The evaluation of this
algorithm is presented on analytical surface triangulations by comparing it with other recognized fitting methods
according to three criteria: convergence, precision and robustness. By experimenting on various data, we show that the
Sinefitting algorithm is less affected by errors in vertex normal estimation.
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1. RELATED WORK

Knowledge about the geometric shape of an object is based on the understanding of the differential structure
of the object boundary surface: the principal curvatures and directions, the Gauss and the Mean curvatures of
the boundary surface. We are interested in estimating this differential structure of the underlying smooth
surface from a given triangulation. Since the pioneer works of [1, 21, 7], curvature estimation is a central
issue in a great number of research. For surveys we refer the reader to [15, 19, 23]. Generalized curvatures,
convergence and measure stability are covered by [12, 18, 3]. The approaches considered in this paper are
based on the fitting paradigm: first, a quadratic form is constructed at each vertex of the surface triangulation
and then the local differential structure is derived. Chen et al [4] use the normal curvature as stated by the
Meusnier and Euler's theorem and locally fit a set of circles through the neighbour vertices. McIvor et al [16]
use a quadratic surface fitting for determining the principal frame and the rotated principal quadric. Different
variants of this method are applied depending on the type of the quadratic form (simple SQFA, extended or
full). More generally, Cazals et al [2] make use of osculating jets defined as truncated Taylor expansions. For
Taubin [24] the quadratic form is expressed as an integral representation that is used to obtain the curvature
tensor. Langer et al [14] use integral representations of the Gauss and the Mean curvatures. Cohen-Steiner et
al [5] use integrals of specific differential forms on their normal cycles. Fitting enables precise estimation of
curvatures but it is very sensitive to the surface discretization and to the distribution of the edge directions in
the vertex neighbourhood. Indeed, these methods make use of the surface normal approximation which
strongly depends on the regularity of the triangles in this neighbourhood.

In the current paper, a novel method for curvature estimation, called SineFitting, is presented. At each
vertex of the surface we construct a sinusoidal curve to fit the directional angles from the target vertex to its
neighbours. Therefore, in contrast to Chen's method, there is no need to restrict the choice of neighbours to
specific configurations (pairs of geometrically opposite vertices). Moreover, computations in under or
oversampled neighbourhoods remain robust while maintaining high precision. The elaborated method has a
linear convergence rate and is not acutely affected by errors in estimation of the normal.



2. OVERVIEW OF THE SINEFITTING METHOD

We refer the reader to [22] for detailed discussion on surface differential geometry. Let S be a surface, P a
target vertex from S and N the unit normal vector to S in P. Let τ be the tangent plane of S in P, see Fig.1.
Given a unit vector T in τ, the osculating plane ι through N  and T intersects S in a curve c. Let n  be the
unit normal vector of c in P and  the angle between n and N , ).( N,n=

Figure 1: Local surface geometry around point P
According to Meusnier & Euler's theorem, the normal curvature Tk of S in P along T  could be defined as

 cos.k=kT  (1)

where k denotes the curvature of c in P and N·n=)cos( . WhileT is rotated around N , an infinite number of
normal curvatures kT could be defined. The extreme values of kT, kmin and kmax, are achieved along the
principal directions, minT and .maxT Euler's theorem gives the relation between kT, kmin, kmax and the angle θ ,

.)( maxT,T=θ 

)()( θ·sin²k+θ·cos²k=k minmaxT  (2)

The proposed algorithm, called SineFitting algorithm, is based on (1) and (2) in order to evaluate the
principal directions minT and ,Tmax the principal curvatures kmin and kmax, the Gauss and the Mean curvatures,
kG and kH , in P. Our approach is based on a two steps procedure: First, the normal curvature kT is evaluated
according to (1) for curves locally fitting the normal sections of the surface. Second, a sinusoidal curve is
constructed to approximate the computed values of kT following (2). Principal curvatures and directions are
calculated for specified values of the sinusoidal amplitude and frequency. Let TS be a triangulation of S, N(P)
a neighbourhood of P, N={Pi, PPi   TS, i=0,…,m-1} and ki the normal curvature of S along PPi. Let Pi

* be
the projection of Pi on τ, Mi the middle point of PPi and Mi the median of PPi, shown in Fig.1. Let us
construct a circle σ passing through P and Pi, and centred at Oi, Oi = N

l ∩ mi, where
N

l  is the straight line

supporting N . Let n  be the unit normal of σ,
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Let us now apply (1) to ki and kσ:
))(.cos( n,Nk=k σi   (3)

The unit vectors N and n are aligned with opposite directions and thus 1))(cos(  =n,N . The curvature ki

can be expressed then as:
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Let ψ be the angle  (Mi, P, Oi). From the right-angled triangle Δ(Mi, P, Oi) it follows that
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The value of cos(ψ) can be estimated from the scalar product of N and iPP and by the substitution
in (4) we finally compute the estimation of ki:
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It should be noticed that the estimation (6) is similar to the estimation in [24]. The above construction gives a
geometrical insight of the normal curvature estimation.

The second step of our algorithm includes the construction of a sinusoidal curve that approximates
the normal curvature in N(P). Our goal is to rise the constraint of using minT and maxT in (2), and fit a linear
sinusoidal expression. According to (2) we have:

   iminimaxi θ·sin²k+θ·cos²k=k  (7)

where )( maxii T,T=θ  . We introduce the angle ϕ

ϕ = ( 0T , maxT ) (8)

where 0T is any vector from N*(P), N*(P) = {PPi
*, i=0, …, m-1}. In (7), iθ is substituted by αi, αi = θi - ϕ .

Then (7) is rewritten as:
)()(  +α·sin²k++α·cos²k=k iminimaxi  (9)

Next we substitute ϕ, kmin and kmax as:
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The equation (9) is rewritten as:
c+αb·+αa·=k iii )sin(2)cos(2  (13)

Now we are ready to compute a sinusoidal curve to approximate in a least square way the estimated from (6)
normal curvatures. The intuition of this approach is to first estimate a sine wave shape of arbitrary phase. The
peaks of its deviation will correspond to the values of kmin and kmax. The principal directions minT  and maxT will
correspond to the phases of the leftmost peaks in relation to the origin.

The SineFitting algorithm is given in Algo. 1

Figure 2: SineFitting curvature estimation over one ring neighbourhood



Algorithm 1 SineFitting

Require: P and TS

Ensure: minT and maxT , kmin and kmax, kG and kH at P
1: N(P) ← extract neighbour vertices Pi of P
      Let m=|N(P)|, the number of neighbours
2: N ← the unit normal vector in P
3: τ ← the tangent plane in P with normal N
4: for 1=i to 1m do
5:  Pi

* ← projection of Pi on τ

6:
*

*
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7: end for
8: for i=1 to m-1 do
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{estimation of the normal curvature along  6PPi }

11: end for
12: Least square sinusoidal fitting to calculate a , b and c such that
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13: Calculate kmin (11), kmax  (12)
14: Calculate maxT  (8) & (10)

15: Calculate c=k+k=k,·kk=k maxmin
HmaxminG 2

3. EXPERIMENTAL SETUP

The discussion below is detailed on three particular examples, a sphere, Ssphere, a right circular
cylinder, Scylinder and a trigonometric bivariate function, Strigonometric defined as follows:

Ssphere: x² + y² + z² = 2² (14) Scylinder: x² + y² = 2², -2 ≤ z ≤ 2 (15) Strigonometric: 0.1(cos(xπ) + cos(xπ)) (16)

The full experimentation data set covering all geometric configurations according to the surface
classification given in [7], is accessible at http://dept-info.labri.fr/~charton/curvature_analysis/. The surface
triangulation in use is the square split sampling defined in [13].

The proposed comparative analysis includes methods acknowledged as representative in both
discrete and continuous approaches: the discrete approach formulates a closed form for differential geometry
operators that works directly on the discrete representation as the method proposed by Desbrun, Meyer et al
[6, 17] and abbreviated as SDA. The continuous approach includes a two stage procedure. First an entity
fitting is processed: fitting of surfaces, as the simple quadratic fitting method of McIvor et al [16] abbreviated
SQFA, or fitting of curves, as [4], or fitting of the curvature tensor, as [24] and [14]. Then fitted entities are
"interrogated" in order to evaluate the principal curvatures and directions, the Gauss and the Mean



curvatures. We study the performances of the SineFitting method with respect to three criteria: the pointwise
convergence, the precision and the robustness.

Pointwise convergence
Let P be a target vertex on the surface S, B(P, r) a ball centred at P with radius r and cB(P, r) an intersection
curve, cB(P, r) = S ∩ B(P, r). Let us consider N(P) with central vertex at P and neighbour vertices 5

0=ii }{P on
cB(P, r). The pointwise convergence tests for the target vertex P consist in checking if the estimated values of
the curvatures converge to the exact values when r→0.

Precision
The estimated curvatures are compared with the exact ones computed from the curvature formulas for
implicit surfaces given in see in [11].
For Ssphere curvatures are constant, kmin = kmax = kH = 0.5, and kG = 0.25. For Scylinder any point not belonging to
the bottom and the up circle sides has kmin = 0, kmax = 0.5, kH = 0.25 and kG = 0. For Strigonometric the symbolic
computations are performed usingMaple17.

Robustness
In order to test robustness, we investigate four strategies for the sampling of 5

0=ii }{P on cB(P, r) inspired from
the experiments of [8], [9], [10] and [14]:
The regular neighbourhood Nreg(P) corresponds to a regular sampling around P and enables to study
convergence when no degenerate triangles occur in the vicinity of the target vertex.
In the irregular neighbourhood Nirreg(P), pairs of vertices Pi and Pi+2, i=0,1,2, are aligned. This geometric
configuration corresponds to the "regular vertex" following [14]. Being less constrained than Nreg(P), it
focuses on the direction distribution and downplays the distances to the neighbours.
The regular neighbourhood with angle perturbation NregδAngle(P) is constructed from Nreg(P) by displacement
of a single vertex Pj toward or away from its neighbours on the surface.
The regular neighbourhood with distance perturbation NregδDist(P) is constructed from Nreg(P) by displacement
of a single vertex Pj towards or away from P on the surface.
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Figure 3: Sphere pointwise convergence test for mean curvature
computation with area-weighted normal.

4. RESULTS

Pointwise convergence
Examples of the pointwise convergence, in P(2, 0, 0) on Ssphere are provided in Fig.3. The vertical axis
indicates the variation of the mean curvature kH. The center of the kH variation interval is the exact value of
kH. The horizontal axis corresponds to the radius r of B(P, r). According to our experimentation all methods
converge to the exact curvature values when the theoretical normal is used no matter the perturbations on the
neighbourhood N(P). The rates of convergence are linear except for the SQFA method.



When the normal is approximated with an area weighted normal and the neighbourhood vertices are
displaced for NregδDist(P), see Fig.3(c), only SDA converges to the exact value.
The pointwise convergence in P(2, 0, 0) on Scylinder is shown in Fig.4 and Fig.5. For this example, all methods
converge to the exact values with the theoretical normal except for the case of Nreg(P), see Fig.4(a). The
methods SQFA, Langer's and the SineFitting converge to the exact values when the theoretical normal is
used for all types of N (P ) . The best convergence rate is achieved by the SineFitting method.
The results on Scylinder when the area weighted normal is used do not converge to the exact values when the
neighbourhood is perturbed. Moreover, the type of perturbation, depending on the distance between the target
vertex and the neighbours, or on the angles adjacent to the target vertex, does not have the same impact on
the algorithms. As for example, Chen's and Langer's methods are precise for kH with angle perturbation,
Nirreg(P), while approximating Hk with NregδAngle(P) and NregδDist(P). The extremely erroneous value for kH, kH

= 0.277778, is produced by the Taubin's method on Nirreg(P).
From a quantitative point of view, by counting the total number of successful tests, SQFA and the SineFitting
perform better than the others. The convergence rate makes the difference: the quadratic convergence rate of
the SQFA makes it less attractive, favouring the SineFitting method.
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Figure 4: Cylinder pointwise convergence test for mean curvature computation with theoretical normal.

Precision
The precision is illustrated in Fig.7 with respect to the Gauss curvature evaluation on Strigonometric. As one can
see in Fig.7(b, c, f), Taubin's, Chen's and Langer's methods lack of precision in some points of inflection.
The SineFitting method surpasses in precision the other methods: the error deviation is minimal for the
different neighbourhood perturbations.

Robustness
The sensitivity of curvature estimation to the precision of the normal is illustrated in Fig.6. The regions
where the estimated values are equal to the exact ones are coloured in green. With blue and red colours the
regions where curvatures are respectively underestimated or overestimated are shown. All examples in
Fig.6(a)-(f) use the theoretical normal while those in Fig.6(g)-(l) exploit the area-weighted normal
approximation. As one can see the errors in the curvature estimation are structurally related to the quality of
the underlying region triangulation, vertex valence for the poles of the sphere, and triangle quality all over
the triangulation. The SDA outperforms all algorithms having similar results for both normals, the theoretical
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Figure 5: Cylinder pointwise convergence test for mean curvature computation with area-weighted normal.

and the area-weighted ones. SQFA and Langer's methods are the more sensitive to the normal precision as
seen in Fig.6(k)(l). The proposed SineFitting algorithm handles the irregularities in the valence and the shape



of the surface triangulation when the theoretical normal is available and remains stable when the normal is
approximated.

(a) SDA (b) Taubin (c) Chen (d) Sinefitting (e) SQFA (f) Langer

(g) SDA (h) Taubin (i) Chen (j) Sinefitting (k) SQFA (l) Langer
Figure 6: Mean curvature evaluation based on theoretical and area-weighted normal

(a) SDA (b) Taubin (c) Chen (d) Sinefitting (e) SQFA (f) Langer
Figure 7: Gauss curvature evaluation based on theoretical normal

5. CONCLUSION AND PERSPECTIVES

In the present article we propose a method for the evaluation of the principal directions and curvatures, the
Gauss and the Mean curvatures of surface triangulations. The elaborated method is based on a curvature
Sinefitting algorithm and allies the advantages of the curve and surface fitting methods in processing the
irregular data sampling. Three fundamental treatments are identified during the curvature evaluation at a
target vertex: extraction of the neighbourhood, estimation of the normal and principal directions and
curvature computation. Key attention is kept to the role of the normal estimation. A comparative analysis
with other widely used methods is provided. Experimental results on chosen data set enhance the SineFitting
performances with respect to the pointwise convergence, the precision and the robustness of the computation.
One future extension of our work is to improve the normal estimation on meshes. In addition, we intend to
extend our method to compute curvature on a wider scale by examining multi-ring neighbourhood. Our goal
is to revisit geometric saliency and develop segmentation techniques based on precise and robust curvature
estimation.
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